2 resultados para 454 Pryosequencing

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evacuation analysis of passenger and commercial shipping can be undertaken using computer-based simulation tools such as maritimeEXODUS. These tools emulate human shipboard behaviour during emergency scenarios; however it is largely based around the behaviour of civilian passengers and fixtures and fittings of merchant vessels. If these tools and procedures are to be applied to naval vessels there is a clear requirement to understand the behaviour of well-trained naval personnel interacting with the fixtures and fittings that are exclusive to warships. Human factor trials using Royal Navy training facilities were recently undertaken to collect data to improve our understanding of the performance of naval personnel in warship environments. The trials were designed and conducted by staff from the Fire Safety Engineering Group (FSEG) of the University of Greenwich on behalf of the Sea Technology Group (STG), Defence Procurement Agency. The trials involved a selection of RN volunteers with sea-going experience in warships, operating and traversing structural components under different angles of heel. This paper describes the trials and some of the collected data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Curing of encapsulant material in a simplified microelectronics package using an open oven Variable Frequency Microwave (VFM) system is numerically simulated using a coupled solver approach. A numerical framework capable of simulating electromagnetic field distribution within the oven system, plus heat transfer, cure rate, degree of cure and thermally induced stresses within the encapsulant material is presented. The discrete physical processes have been integrated into a fully coupled solution, enabling usefully accurate results to be generated. Numerical results showing the heating and curing of the encapsulant material have been obtained and are presented in this contribution. The requirement to capture inter-process coupling and the variation in dielectric and thermophysical material properties is discussed and illustrated with simulation results.